Why Do Developers Prefer MongoDB?

Tim Vaillancourt

Software Engineer, Percona

"whoami’

name: “tim”,

lastname: “vaillancourt”, ERabbitVO
employer: “percona”, ANSIBLE Aﬁ“‘.’en

techs: | puppet
“mongodb”,
“mysql”,
“cassandra”,
“redis”,
“rabbitmq”,
“solr”,
“mesos”
“kafka”,
“couch™”,
13 python”,
“golang”

Agenda

Data Models

o Key/Value

o Relational

o Columnar

o Document

Common Problems
MongoDB Features
Comparisons
Misconceptions

Percona MongoDB Software

Data Models

Key [Value Stores

e Asimple database for storing associative arrays
e Data can be queried by key only
e Values are opaque “blobs”
® Use cases:
o Caches

m Do something that takes a long time (JOINs, API calls, etc)

m Serialise to something like JSON

m Write a key/value pair to Memcache

m Read the key/value pair

m Deserialize from something like JSON

redis

M

Value

AAA,BBB,CCC

JAVAN

AAA BBB
AAA,DDD

A,2,01/01/2015
3,777,5623

O

O
m
Py
(9]
o
<
>

Key [Value Stores

e Benefits
o Simple
o Fast/ efficient
e Drawbacks
o Query language is very limited
m Get/Set/Incr./Decr./Delete
o Values are meaningless / keys only

M

Value
AAA BBB,CCC
AAA BBB
AAA,DDD
AAA,2,01/01/2015
32775693

O
m
Py
(9]
o
<
>

Relational Model

Started in 1970

Data organised into table(s) of columns
and rows

MHS&D

Generally each “entity type” (eg: customer, PoatgraSit. e
product, etc) is a table - . oo aNT
Schema and data types are static sop_s NT ’;\ o
SQL query language P"_mw/ey A e
Relationships are generally made using ' ' ///m :
foreign keys to other tables Foreign Key

o Querying these relationships require JOINs

Relational Model

e Benefits
o Powerful SQL query language @
o Data strictness (type, size, etc) M U SQL.
e Drawbacks PostgreSQL R
o JOIN-heavy database models are inefficient 3::'::“ v
at scale jde:':'::.m i » emp_name VARCHAR(55)
m Caching JOINs became popular with release of / . r“\ » hire_date DATE
memcached (a Key/Value store) in 2003 — : o\ | o sy
. ')dept_ileT

o Rigid schema

\\rs’

Foreign Key

Column-oriented Model

e Stores datatables by column rather than by
row

e Accesses data more-precisely rather than
scanning unwanted data in rows

e Generally abstracted to the user

Row Storage Columnar Storage

Last First Street .
Name | Name | E-mail | Phone # | Address Last First Street
Name Name E-mail Phone # Address

&

cassandra

Column-oriented Model

e Benefits
o Compression /W
o Efficiency \W
e Drawbacks
o Generally more restrictions cassandra

Row Storage Columnar Storage

Last First Street .
Name | Name | E-mail | Phone # | Address Last First Street
Name Name E-mail Phone # Address

Document-oriented Model

e Allows storage of rich, semi-structured/nested
documents

e Fields and data types do not need to be

oredefined

e Datais stored into collections of documents

e Aligns more closely with Objects in modern
programing languages

e Nested objects are the new standard

Beer Documents

beer 1167

{_id: 1167/
name: “Ale C",
brewer:“Miller”,

Document-oriented Model

e Benefits
o Documents == objects
o Flexible schema

o Data locality with documents

m /e: relationships are already “JOINed”
e “Ever cached a complex structure built from SQL queries?
Why not make it a single MongoDB document?”

m No cross-node JOINing (at scale)
o Rapid development

e Drawbacks
o Flexible schema:)

Beer Documents

beer 1167

{_id: “1167/
name: “Ale C’,
brewer:“Miller”,
units: 570

}

Documents == Objects

{“Situation™ {

“instance": "sit001",
e Most data sources are structured JSON now “data properties’ {
e Developers like Objects cuncartainty- 6k
. . . 1)
O Most database-driven applications use nested Ll
objects in their code: fo-vi o
m Python dictionaries el st
m G O[an g structs } “transcribedCall™: “good night ... black cap”
L .Ruby+Perl f.)ashes) ——
O Object-Relational Mappers Anjance s LS
m Alotof SQL-driven apps are pretending their not e et S
SQL-driven apps :) "ot iopne
“site": {

“instance": "local_001",

" data properties ": {
“street": “avenue...",
" completeness “: "80%"

o PERCONA

I

MongoDB Features

Overview

Flexible document model

Built-in High-availability

Built-in Scalability

Secondary, partial, geo and text Index support
ACID Transaction (4.0+)

Powerful Aggregation Framework

Query profiling

Role-based access control

Change streams

Document Model

e Document schema does not need to be pre-defined
o However, you can enable Schema Validation (more later)

e Documents can be up to 16MB total

e Documents are stored as BSON
o Datais displayed as JSON in the shell, logs, etc

e Upto 100 levels of nesting

e Supports sub-documents, arrays, strings, references,
date/time and numeric types

e Sub-documents and arrays are accessed with
dot-notation syntax

Document Model

e Schema best practice
o Avoid cross document/collection relationships

o Pack as much data as possible into a single document
m /e: move data you would get via JOINs into a single document
m Specify only the required document-fields on .find() queries

o Use correct data types
m Do not store dates as strings (use the time types)
m Do not store booleans as strings (use booleans)
m Do not store numbers as strings (use real numbers)

o Indexes
m Addthem only if you actually need them
m Do notduplicate indexes

Indexes

e Compound Indexes are supported
o Read left -> right
o Can be partially read

e Indexes have a forward or backward direction
o Tryto cover .sort() with index and match direction!’

e Partial
o Updates an index based on a condition
o Only documents matching the condition are indexed

e TextlIndexes
o Allows quick string-based searches on text

® Geo Indexes

Replica Sets

e Replication

O Changelog based, using the “Oplog”

o Asynchronous, idempotent changes to data
Auto-recovery/failover during failures

More members == more read capacity

Maximum 50 members

Maximum 7 voting members

Oplog

o The “oplog.rs” capped-collection in “local” database
o Read by secondary members for replication

Client Application
Driver

Writes Reads

/ K

& S

> <
Secondary Secondary

Write Concerns

e Allow fine control of data integrity of a write to a

Replica Set
e Tuneable per operation or database session
e Write Concern Modes
o “w:<num>”" - Writes must ack to # of nodes
o “majority” - Writes must ack on a majority of nodes
o “<replica set tag>" - Writes must ack to a member

with the specified replica set tags

e Durable
o Add option “: true” to journal to disk before ack!

Client Application
Driver

Writes Reads

O\\ ’?(l
o &
X 2,
Secondary Secondary

Read Concern

e Like write concerns, the consistency of reads
can be tuned per session or operation

e Levels

o “local” - Default, return the current node’s
most-recent version of the data

o “majority” - Reads return the most-version of the
data that has been ack’d on a majority of nodes.
Not supported on MMAPV1.

o “linearizable” (3.4+) - Reads return data that
reflects a “majority” read of all changes prior to the
read

Client Application
Driver

Writes Reads

Primary
oS
A~
c"\\

e
%
o
\x
Secondary Secondary

Scaling: Read Preference

e Defines which nodes can perform a read operation
o Can be changed per operation or session Driver
o Example (probably a bad one):

m Read unread email messages using “secondaryPreferred”
m Read deleted email message from “primary”

e Read Preference modes &,
o primary (default) ;‘/ \

Writes Reads

o primaryPreferred
o secondary

o secondaryPreferred (recommended for Read Scaling!)

O nearest

Scaling: Read Preference

e Tags
o Select nodes based on key/value pairs (one or more)

o Often used for
m Datacenter awareness, eg: { “dc”: “eu-east” }
m Specific workflows, eg: Analytics, Bl, Batch summaries, Backups

Client Application
Driver

Writes Reads

Primary
O Ao
\\‘}x /"71.
X N

Scaling: Sharding

e A MongoDB configuration providing
o Automatic data partitioning (by shard key) and

balancin g Applction
m For now, shard key must be defined up-front! | oer |
o High-availability (via replica sets) -4 g T
o Online scaling of cluster resources " e ==
m Adding shards provides more write AND read Shard 1 Shard 2 Shard 3 Spard iy
capaciyl
o Sharding based on “tags”, eg: { datacenter: "eu’ & s

} Secondary Secondary

o Cluster-wide causal consistency + clock (3.6+)

o PERCONA

Scaling: Sharding

e Additional components
o Config Server replica set
o Router (“mongos”) processes

N Application

: Driver I'I
‘*i\ ."‘.”
—m—
Query Query
Router Router
v
ihiriN

i

Query b
Router

v v
hard 3

v
ihiri1 ihirdZ

6 PERCONA

Hardware: Mainframe vs Commodity

e Databases: The Past
o Buysome really amazing, expensive hardware

o Buy some crazy expensive license
m Don’truna lotof servers due to above

o Scale up:
m Buyeven more amazing hardware for monolithic host
m Hardware came on a truck

o HA: When it rains, it pours
e Databases: Today

o Buy what you can afford

o Use ascalable database

o Add resources as needed

Aggregation Pipeline

e Run as a pipeline of “stages” on a MongoDB collection
o Each stage passes it’s result to the next
o Aggregates the entire collection by default
m Adda Smatch stage to reduce the aggregation data
e Runsinside the MongoDB Server P—
o Much more efficient than .mapReduce() operations

e Example stages: —

o Smatch - only aggregate documents that match
m Must be 1Ist stage to use indexes!

o $group - group documents by certain conditions
m Similar to “SELECT GROUP BY”

db.usgs.aggregate([$project

4‘

<‘

4‘

$sort

OPERCONA

Aggregation Pipeline

e Example stages:

O
O
O

O O O O O

Scount - count the # of documents
Sproject - only output specific pieces of the data

Sbucket and $bucketAuto - Group documents based on specified expression

and bucket boundaries
m Useful for Faceted Search

SgeoNear - Returns documents based on geo-proximity
SgraphLookup - Performs a recursive search on a collection
Ssample - Returns a random sample of documents of a specified size
Sunwind - Unwinds arrays into many separate documents

$facet - Runs many aggregation pipelines within a single stage

Aggregation Pipeline

e Just afew examples of operators that can be used each stage:

O

O O O O O O O O O

Sand / Sor /Snot

Sadd / Ssubtract / Smultiply

Sgt/ Sgte / Slt/ Slte / Sne

Smin / Smax / Savg / SstdDevPop

Slog / Slog10

Ssqrt

Sfloor / Sceil

Sin (inefficient)

SdayOfWeek / SdayOfMonth / SdayOfYear
Sconcat / Ssplit /...

db.usgs.aggregate(|[

Sproject

<|

Smatch

©»
Q
4‘ o 4‘
c
©

$sort 1;

Aggregation Pipeline

Bucket example:

[

(> —= + B3 [7] JavaScript

> db.items.find()

2 { "_id" : ObjectId("58502ade9a49537a011226fb"), "name" : "scotch", "price_usd" : 9@, "department" : "fc
3 { "_id" : ObjectId("58502ade%9a49537a011226fc"), "name" : "wallet", "price_usd" : 95, "department™” : "cl
4 { "_id" : ObjectId("58502ade9a49537a011226fd"), "name" : "watch", "price_usd" : 900, "department" : "cl
5 | { "_id" : ObjectId("S8502adeSa49537a011226fe"), "name" : "flashlight", "price_usd" : 9, "department" :

<> = B3 [[A JavaScript

1 > db.items.aggregate([

)

2
"_id" : ©0.99, "count" : 1, "departments" : ["hardware"] }
"_id" : 9.99, "count" : 2, "departments" : ["clothing", "food and drinks"] }
"_id" : 99.99, "count" : 1, "departments" : ["clothing"] }

{ Sbucket: {
groupBy: "$price_usd",
boundaries: [.99, 9.99, 99.99, 999.99],
output: {
count: { $sum: 1 },
departments: { $addToSet: "$department"” }
}
1}

Aggregation Pipeline: .aggregate()

e More on the Aggregation Pipeline:

o https://www.percona.com/blog/2016/12/13/mongodb-3
-4-facet-aggregation-features-and-server-27395-mongod

-crash/

o https://docs.mongodb.com/manual/reference/operator/
aggregation-pipeline/

o https://docs.mongodb.com/manual/reference/operator/
aggregation/

o https://www.amazon.com/MongoDB-Aggregation-Frame
work-Principles-Examples-ebook/dp/BOODGKGWE4

https://www.percona.com/blog/2016/12/13/mongodb-3-4-facet-aggregation-features-and-server-27395-mongod-crash/
https://www.percona.com/blog/2016/12/13/mongodb-3-4-facet-aggregation-features-and-server-27395-mongod-crash/
https://www.percona.com/blog/2016/12/13/mongodb-3-4-facet-aggregation-features-and-server-27395-mongod-crash/
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
https://docs.mongodb.com/manual/reference/operator/aggregation/
https://docs.mongodb.com/manual/reference/operator/aggregation/
https://www.amazon.com/MongoDB-Aggregation-Framework-Principles-Examples-ebook/dp/B00DGKGWE4
https://www.amazon.com/MongoDB-Aggregation-Framework-Principles-Examples-ebook/dp/B00DGKGWE4

Security: Authorization

e Built-in Roles

O
O
O
O

O

Database User: Read or Write data from collections
m “All Databases” or Single-database

Database Admin: Non-RW commands (create/drop/list/etc)
Cluster Admin: Add/Drop/List shards

Superuser/Root: All capabilities

Backup and Restore

e User-Defined Roles

O

Exact Resource+Action specification

o Very fine-grained ACLs

m DB+ Collection specific

Change Streams

e Allows an app-driver to subscribe to all changes in a collection
o Optional server-side filtering of stream

e Can be used to create a pub/sub-like workflow

e Example use cases:

o Updating cache tiers based on inserts/updates to a collection
o Syncing data to unrelated systems

o Sending an email when an “email message” document changes
m Example of this workflow here:

https://www.percona.com/blog/2018/03/07/using-mongodb-3-6-change-streams/

OPERCONA

https://www.percona.com/blog/2018/03/07/using-mongodb-3-6-change-streams/

Schema Validation

e A feature that allows strict schema r~y—

validation
o Forexample: e 1 sl S e
m Which fields must exists in documents MongoDB: how to use the JSON Schema Validator
m WWhat data types those field-values must
have

2018 © application design, database schema, flexible schema, JSON Schema Validator, Schema Design, schemaless ® 2 Comments

. Refu SeS to W rite i nva l i d d OC u m e n tS The flexibility of MongoDB as a schemaless database is one of its

strengths. In early versions, it was left to application developers to

Solutions

MongoDB: how to use the JSON Schema Validator

& By Corrado Pandiani % Insight for Developers, MongoDB, open source databases, Percona Server for MongoDB

ensure that any necessary data validation is implemented. With the
introduction of JSON Schema Validator there are new techniques to

httpS ://WWW.peI'COI‘Ia.C0m/b|Og/201 8/08/1 6lmon90d b'hOW'tO' enforce data integrity for MongoDB. In this article, we use examples
use.json-schema-val idator/ to show you how to use the JSON Schema Validator to introduce

validation checks at the database level—and consider the pros and

cons of doing so.

Comparisons

Memcached / Redis

e A Key/Value store
o Memcached: without persistence
o Redis: with persistence to disk
e LRU caching of key/values
e Useful for
o Caching opaque values with known keys
o Eg: caching blobs, JOINs, API data, etc

e Drawbacks
o Lack of query functionality
o Lack of built-in High Availability

MySQL (PostgreSQL to some extent)

e Relational database model with SQL query language
Support via InnoDB
e Built-in asynchronous replication

o Semi-sync is possible

e Useful for

o Almost anything MHSQLO

e Drawbacks

o Does not have full High Availability built-in
m /ools like MHA themselves are rarely Highly-available

MySQL (PostgreSQL to some extent)

e Drawbacks

o No built-in support for scaling beyond 1 x node/set
m No cluster knowledge
m No cluster time

o Lack of tunable consistency

o Inflexible schema M Q
m Schema changes usually cause a full table rewrite or H S L®

significant disk I/0O
m Yes, there is JSON support...

o Depends heavily on single-node assumptions

MySQL JSON Syntax

e MongoDB was designed for semi-structured data:

SELECT

*

FROM

“e_store”. “products”

WHERE

“category_id® = 1

AND “attributes™ - '$.ports.usb' > 0

AND “attributes™ — '$.ports.hdmi' > 0;

ALTER TABLE "e store . products ADD COLUMN
"port usb’ INT GENERATED ALWAYS (c->"$.ports.usb"),

ADD INDEX "port usb’

("port usb’);

db.products.find ({
category id: 1,
"ports.usb": { Sgt: 0 1},
"ports.hdmi": { Sgt: 0 }
)

db.products.createlIndex ({
"ports.usb": 1

})

mongo

Cassandra

e Columnar based database with SQL-like query interface
e Benefits
o Highly write-optimised
o Flexible schema
o Synchronous Writes
o Multi-master, highly available topology
e Drawbacks
o Lack of 2ndary indexing, limited query functionality
o Reads are sometimes slow
o Always uses Synchronous Writes
o Java (ScyllaDB has made a C-based fork)

cassandra

MongoDB in Contrast

Full High-availability

Linear, online read and write scaling

o Auto-balancing of cluster data

Natural, rich document model

Powerful Aggregation Framework / Pipeline
Great Read and Write performance

Great indexing support

Cluster-wide Causal Consistency

Operation Profiling

MongoDB in Contrast

e Built-in on-disk compression
e Simple query syntax
e Useful for:

o Almost anything

(Mis)conceptions

Please don’t let me be misunderstood

MongoDB: MongoDB can be a great choice if you need scalability and caching for real-
time analytics; however, it is not built for transactional data (accounting systems, etc.).
MongoDB is frequently used for mobile apps, content management, real-time analytics,
and applications involving the Internet of Things. If you have a situation where you have

no clear schema definition, MongoDB can be a good choice.

Which Database is Right for Your Business?

Until very recently, when you shopped for a database you had to choose:
Scalability or consistency? SQL databases such as MySQL guarantee
strong consistency, but don’t scale well horizontally. (Manual sharding for
scalability is no one’s idea of fun.) NoSQL databases such as MongoDB
scale beautifully, but offer only eventual consistency. ("Wait long enough,
and you can read the right answer”—which isn't any way to do financial
transactions.)

https://blog.panoply.io/cassandra-vs-mongodb

1. ACID Transactions (which
Cassandra doesn’t have)
2. Read and Write Concerns

https.//www.infoworld.com/article/3244138/sql/cockroachdb-review-
a-scale-out-sql-database-built-for-survival.html

1. Use Read and Write
Concerns for time
sensitive data

Please don’t let me be misunderstood

“It’s like writing your data to /dev/null”

Author: Ken Rugg

Is ACID a Priority or Not? Can MongoDB Decide?

If I'm honest, | think of MongoDB as more of a “data store” than an actual
database. This may be a controversial opinion these days, but | don’t think it's
a hard position to support. Granted, MongoDB does a great job storing data for
a particular use case and can be highly optimized for that purpose. But, as
applications inevitably evolve, Mongo’s single-use case formula, where
applications leverage the document store to optimize one access path to the
data, starts to unravel. To be a true general purpose database, you need to be
able to support many different paths through the same data set to support different use cases, whether your goal is
reporting, inline analytics or just supporting a new business process that wasn't envisioned when the document
structure was designed.

https://www.youtube.com/watch?v=HdnDXsqiPYo
P Y q https.//www.enterprisedb.com/blog/acid-priority-or-not-can-mongodb-decide

1. Journaling (enabled by default) 1. ACID Transactions were added
2. Write Concerns in 4.0
2. Cluster-wide ACID coming soon

6 PERCONA

Please don’t let me be misunderstood

More than 26,000 vulnerable MongoDB
databases whacked by ransomware

Security shortcomings return to haunt firm as it prepares for IPO

"Schema-less ==
inconsistent data”

https.//www.theinquirer.net/inquirer/news/3016752/mongodb
-hack-26000-databases-whacked-by-ransomware

1. Don’t leave your front door unlocked
2. Use authentication (enabled by default 3.6+)

0 PERCONA

1. Use Schema Validation

Please don’t let me be misunderstood

Investors are misreading MongoDB: it's a
service provider, not a software seller

MongoDB are an enterprise IT company that went public October 19. Unlike

recent consumer-tech IPOs, Mongo’s did rather well: shares rose 30% on the

ﬁrSt day Of tradina Mananlo mitah +4 insractaro 10 laid At inm thair nraonantiia
Quora

Q Search for questions, people, and topics
The import

Quora uses cookies to improve your experience. Read more

NoSQL MongoDB MySQL Database Systems

Why is MongoDB hosting so costly in comparison to
other DBs like MySql DB?

Ad by DatadogHQ.com

MongoDB Issues New Server Side Public

License for MongoDB Community Server

New License Leads the Way for Open Source in the Cloud Era

NEW YORK, NY - October 16, 2018 - Today MongoDB, Inc. (Nasdaq: MDB), the leading modern, general purpose
database platform, issued a new software license, called Server Side Public License (SSPL), for MongoDB Community
Server. The license clearly and explicitly states the conditions of deploying MongoDB - or any other open source project
licensed under the SSPL - as a service. All versions of MongoDB's Community Server released after today, including patch
fixes for prior versions, will be licensed under the SSPL.

https://www.mongodb.com/press/mongodb-issues-new-se
rver-side-public-license-for-mongodb-community-server

1. Percona MongoDB Offerings

OPERCONA

Percona and MongoDB

Percona Server for MongoDB

e Free, open-source drop-in replacement for MongoDB Community
Edition

o No client-level APl changes

O

e Enterprise-Grade features for free

@)
O
O
O

O

No lock-in unless our additional features are used

Auditing support
External LDAP Authentication

Hot Backups (for WiredTiger) PER C 0 NA

Percona InMemory Engine Server for MongoDB
m Make MongoDB a sharded caching tier!

New in 3.6.8: alpha release of WiredTiger Data Encryption!

OPERCONA

Percona Monitoring and Management

e Free and open-source platform for managing and monitoring MySQL®,
MariaDB® and MongoDB® performance

e Provides
o Visualisations of Database and Operating System metrics
o Point-in-time visibility and historical trending of performance
o Datafrom the MongoDB Query Profiler

m Very useful for development and production troubleshooting
m Avoids the need for connecting to databases

e Docker-based deployment of server

Percona PMM: Metrics

{3 - 88 MongoDB Standalone Instance - ? < ZoomOuwt > O Sep 25,2016 22:41:34 to Sep 26, 2016 05:

SELECT sbtest 84D1DEE77FA8BDAC3

Interval: auto- Mongod Instance: sd-91040 -

Current Linux Load Avg Current User CPU % Current System CPU % Current I0 Wait CPU %

0.24 7.34% 1.29% 0.46% Rate/Soc

Command Operations / sec 8244 per s

.08

ad Bytes

) Diss

2300 00:00
= noTimeout == pinned == total

Disk Performance
Disk Space
sbtest?
MongoDB Cluster Summary
MongoDB Replica Set
MongoDB RocksDB
MongoDB Standalone Instance

MongoDB WiredTiger

EXPLAIN

Percona PMM: Query Analytics

(D pERCONA & _mongorsinmem_ v |#a Query Profile £ System Summary % Settings

Query Analytics

Top 10 of 113 Queries by % Grand Total Time (%GTT) Search by Query Abstract, Fingerprint or ID E]
Query Abstract ID Load Count Latency
TOTAL M A 36.34 (100.00%) 102.97 QPS M A 370.68 k (100.00%) ———————— 352.95 ms avg —
1 FIND sbtest5 _id,c e2.. o 0.88 (2.42%) 0.27 QPS '»—. 974.00 (0.26%) Vv ' | 3.25 sec avg o—
2 FIND sbtest16 _id,c b3... Ad—olliebemmdai. (.85 (2.34%) 0.26 QPS FIND sbtest5 _id,c €282abedb6d02733a0c7701a198f1bc9
60.00 at 2017-09-25 00:36:55
3 FIND sbtest4 _id,c 35... ——AT— 7000.85 (2.34%) 0.26 QPS —
4 FIND sbtest15 _id,c 6a.. M AN~ ~~~— 0.85 (2.33%) 0.26 QPS Metrics Rate/Sec Sum Per Query Stats
5 FIND sbtest11_id,c etc... ra—An— 0.84 (2.32%) 0.26 QPS Query Count AR 249000 30% ot
= . Query Time 0.88 load (2.43%) 0:53:04 2.43% of total 3.22 sec avg —
6 FIND sbtest7 _id,c 56... | maady - -~ 0.84 (2.31%) 0.26 QPS Docs Returned 27.19 (per sec) 97.90 K 3.24% of total 0.00 avg 5
7 FIND sbtest14 id.c de... = . . _ 0.84 (2.30%) 0.25 QPS Docs Scanned 27.19 (per sec) : 97.90 k 3.21% of total 1.00 per row sent 0.00 avg >
8 FIND sbtest1 _id,c 9b... WOV ~— /. 0.83 (2.30%) 0.25 QPS QUERY
9 FIND sbtest2 _id,c 69... Al \ 0.83 (2.27%) 0.25 QPS wFingerprint
10 FIND sbtest6 _id,c be.. A A 0.82 (2.26%) 0.25 QPS I
¥Lloadne yeyample
EXPLAIN S sbtest EXPLAIN
vJSON
{

"queryPlanner": {
"plannerVersion": 1,
"namespace": "sbtest.sbtest5",
"indexFilterSet": false,
"parsedQuery": {

“$and": [
{

o PERCONA

Coming soon from us...

e Percona Server for MongoDB 4.0
e Container orchestration for MongoDB...
e A new consistent backup solution for MongoDB...

ik PERCONA
) Live Europe

Tickets are selling fast!

Percona Live Europe
Connect. Accelerate. Innovate.

Join the open source community in Frankfurt, Germany,
to learn about core topics in MySQL, MongoDB, MariaDB

PostgreSQL and other open source databases.

Reserve Your Seat

Frankfurt 5-7 November 2018

\ Buy Your Tickets

https://www.percona.com/live/e18/

Questions?

DATABASE PERFORMANCE
MATTERS

®

