
Speaker Name

Why Do Developers Prefer MongoDB?

Tim Vaillancourt
Software Engineer, Percona

{
name: “tim”,
lastname: “vaillancourt”,
employer: “percona”,
techs: [

“mongodb”,
“mysql”,
“cassandra”,
“redis”,
“rabbitmq”,
“solr”,
“mesos”
“kafka”,
“couch*”,
“python”,
“golang”

]
}

`whoami`

Agenda

● Data Models
○ Key/Value
○ Relational
○ Columnar
○ Document

● Common Problems
● MongoDB Features
● Comparisons
● Misconceptions
● Percona MongoDB Software

Data Models

Key / Value Stores

● A simple database for storing associative arrays
● Data can be queried by key only
● Values are opaque “blobs”
● Use cases:

○ Caches
■ Do something that takes a long time (JOINs, API calls, etc)
■ Serialise to something like JSON
■ Write a key/value pair to Memcache
■ Read the key/value pair
■ Deserialize from something like JSON

Key / Value Stores

● Benefits
○ Simple
○ Fast / efficient

● Drawbacks
○ Query language is very limited

■ Get / Set / Incr. / Decr. / Delete
○ Values are meaningless / keys only

Relational Model

● Started in 1970
● Data organised into table(s) of columns

and rows
● Generally each “entity type” (eg: customer,

product, etc) is a table
● Schema and data types are static
● SQL query language
● Relationships are generally made using

foreign keys to other tables
○ Querying these relationships require JOINs

Relational Model

● Benefits
○ Powerful SQL query language
○ Data strictness (type, size, etc)

● Drawbacks
○ JOIN-heavy database models are inefficient

at scale
■ Caching JOINs became popular with release of

memcached (a Key/Value store) in 2003
○ Rigid schema

Column-oriented Model

● Stores data tables by column rather than by
row

● Accesses data more-precisely rather than
scanning unwanted data in rows

● Generally abstracted to the user

Column-oriented Model

● Benefits
○ Compression
○ Efficiency

● Drawbacks
○ Generally more restrictions

Document-oriented Model

● Allows storage of rich, semi-structured/nested
documents

● Fields and data types do not need to be
predefined

● Data is stored into collections of documents
● Aligns more closely with Objects in modern

programing languages
● Nested objects are the new standard

Document-oriented Model

● Benefits
○ Documents == objects
○ Flexible schema
○ Data locality with documents

■ Ie: relationships are already “JOINed”
● “Ever cached a complex structure built from SQL queries?

Why not make it a single MongoDB document?”
■ No cross-node JOINing (at scale)

○ Rapid development
● Drawbacks

○ Flexible schema :)

Documents == Objects

● Most data sources are structured JSON now
● Developers like Objects

○ Most database-driven applications use nested
objects in their code:
■ Python dictionaries
■ Golang structs
■ Ruby+Perl hashes

○ Object-Relational Mappers
■ A lot of SQL-driven apps are pretending their not

SQL-driven apps :)

MongoDB Features

Overview

● Flexible document model
● Built-in High-availability
● Built-in Scalability
● Secondary, partial, geo and text Index support
● ACID Transaction (4.0+)
● Powerful Aggregation Framework
● Query profiling
● Role-based access control
● Change streams

Document Model

● Document schema does not need to be pre-defined
○ However, you can enable Schema Validation (more later)

● Documents can be up to 16MB total
● Documents are stored as BSON

○ Data is displayed as JSON in the shell, logs, etc
● Up to 100 levels of nesting
● Supports sub-documents, arrays, strings, references,

date/time and numeric types
● Sub-documents and arrays are accessed with

dot-notation syntax

Document Model

● Schema best practice
○ Avoid cross document/collection relationships
○ Pack as much data as possible into a single document

■ Ie: move data you would get via JOINs into a single document
■ Specify only the required document-fields on .find() queries

○ Use correct data types
■ Do not store dates as strings (use the time types)
■ Do not store booleans as strings (use booleans)
■ Do not store numbers as strings (use real numbers)

○ Indexes
■ Add them only if you actually need them
■ Do not duplicate indexes

Indexes

● Compound Indexes are supported
○ Read left -> right
○ Can be partially read

● Indexes have a forward or backward direction
○ Try to cover .sort() with index and match direction!’

● Partial
○ Updates an index based on a condition
○ Only documents matching the condition are indexed

● Text Indexes
○ Allows quick string-based searches on text

● Geo Indexes

Replica Sets

● Replication
○ Changelog based, using the “Oplog”
○ Asynchronous, idempotent changes to data

● Auto-recovery/failover during failures
● More members == more read capacity
● Maximum 50 members
● Maximum 7 voting members
● Oplog

○ The “oplog.rs” capped-collection in “local” database
○ Read by secondary members for replication

Write Concerns

● Allow fine control of data integrity of a write to a
Replica Set

● Tuneable per operation or database session
● Write Concern Modes

○ “w: <num>” - Writes must ack to # of nodes
○ “majority” - Writes must ack on a majority of nodes
○ “<replica set tag>” - Writes must ack to a member

with the specified replica set tags
● Durable

○ Add option “j: true” to journal to disk before ack!

Read Concern

● Like write concerns, the consistency of reads
can be tuned per session or operation

● Levels
○ “local” - Default, return the current node’s

most-recent version of the data
○ “majority” - Reads return the most-version of the

data that has been ack’d on a majority of nodes.
Not supported on MMAPv1.

○ “linearizable” (3.4+) - Reads return data that
reflects a “majority” read of all changes prior to the
read

Scaling: Read Preference

● Defines which nodes can perform a read operation
○ Can be changed per operation or session
○ Example (probably a bad one):

■ Read unread email messages using “secondaryPreferred”
■ Read deleted email message from “primary”

● Read Preference modes
○ primary (default)
○ primaryPreferred
○ secondary
○ secondaryPreferred (recommended for Read Scaling!)
○ nearest

Scaling: Read Preference

● Tags
○ Select nodes based on key/value pairs (one or more)
○ Often used for

■ Datacenter awareness, eg: { “dc”: “eu-east” }
■ Specific workflows, eg: Analytics, BI, Batch summaries, Backups

Scaling: Sharding

● A MongoDB configuration providing
○ Automatic data partitioning (by shard key) and

balancing
■ For now, shard key must be defined up-front!

○ High-availability (via replica sets)
○ Online scaling of cluster resources

■ Adding shards provides more write AND read
capacity!

○ Sharding based on “tags”, eg: { datacenter: “eu”
}

○ Cluster-wide causal consistency + clock (3.6+)

Scaling: Sharding

● Additional components
○ Config Server replica set
○ Router (“mongos”) processes

Hardware: Mainframe vs Commodity

● Databases: The Past
○ Buy some really amazing, expensive hardware
○ Buy some crazy expensive license

■ Don’t run a lot of servers due to above
○ Scale up:

■ Buy even more amazing hardware for monolithic host
■ Hardware came on a truck

○ HA: When it rains, it pours
● Databases: Today

○ Buy what you can afford
○ Use a scalable database
○ Add resources as needed

Aggregation Pipeline

● Run as a pipeline of “stages” on a MongoDB collection
○ Each stage passes it’s result to the next
○ Aggregates the entire collection by default

■ Add a $match stage to reduce the aggregation data
● Runs inside the MongoDB Server

○ Much more efficient than .mapReduce() operations
● Example stages:

○ $match - only aggregate documents that match
■ Must be 1st stage to use indexes!

○ $group - group documents by certain conditions
■ Similar to “SELECT …. GROUP BY”

Aggregation Pipeline

● Example stages:
○ $count - count the # of documents
○ $project - only output specific pieces of the data
○ $bucket and $bucketAuto - Group documents based on specified expression

and bucket boundaries
■ Useful for Faceted Search

○ $geoNear - Returns documents based on geo-proximity
○ $graphLookup - Performs a recursive search on a collection
○ $sample - Returns a random sample of documents of a specified size
○ $unwind - Unwinds arrays into many separate documents
○ $facet - Runs many aggregation pipelines within a single stage

Aggregation Pipeline

● Just a few examples of operators that can be used each stage:
○ $and / $or /$not
○ $add / $subtract / $multiply
○ $gt / $gte / $lt / $lte / $ne
○ $min / $max / $avg / $stdDevPop
○ $log / $log10
○ $sqrt
○ $floor / $ceil
○ $in (inefficient)
○ $dayOfWeek / $dayOfMonth / $dayOfYear
○ $concat / $split /…

Aggregation Pipeline

Bucket example:

Aggregation Pipeline: .aggregate()

● More on the Aggregation Pipeline:
○ https://www.percona.com/blog/2016/12/13/mongodb-3

-4-facet-aggregation-features-and-server-27395-mongod
-crash/

○ https://docs.mongodb.com/manual/reference/operator/
aggregation-pipeline/

○ https://docs.mongodb.com/manual/reference/operator/
aggregation/

○ https://www.amazon.com/MongoDB-Aggregation-Frame
work-Principles-Examples-ebook/dp/B00DGKGWE4

https://www.percona.com/blog/2016/12/13/mongodb-3-4-facet-aggregation-features-and-server-27395-mongod-crash/
https://www.percona.com/blog/2016/12/13/mongodb-3-4-facet-aggregation-features-and-server-27395-mongod-crash/
https://www.percona.com/blog/2016/12/13/mongodb-3-4-facet-aggregation-features-and-server-27395-mongod-crash/
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
https://docs.mongodb.com/manual/reference/operator/aggregation/
https://docs.mongodb.com/manual/reference/operator/aggregation/
https://www.amazon.com/MongoDB-Aggregation-Framework-Principles-Examples-ebook/dp/B00DGKGWE4
https://www.amazon.com/MongoDB-Aggregation-Framework-Principles-Examples-ebook/dp/B00DGKGWE4

Security: Authorization

● Built-in Roles
○ Database User: Read or Write data from collections

■ “All Databases” or Single-database
○ Database Admin: Non-RW commands (create/drop/list/etc)
○ Cluster Admin: Add/Drop/List shards
○ Superuser/Root: All capabilities
○ Backup and Restore

● User-Defined Roles
○ Exact Resource+Action specification
○ Very fine-grained ACLs

■ DB + Collection specific

Change Streams

● Allows an app-driver to subscribe to all changes in a collection
○ Optional server-side filtering of stream

● Can be used to create a pub/sub-like workflow
● Example use cases:

○ Updating cache tiers based on inserts/updates to a collection
○ Syncing data to unrelated systems
○ Sending an email when an “email message” document changes

■ Example of this workflow here:
https://www.percona.com/blog/2018/03/07/using-mongodb-3-6-change-streams/

https://www.percona.com/blog/2018/03/07/using-mongodb-3-6-change-streams/

Schema Validation

● A feature that allows strict schema
validation
○ For example:

■ Which fields must exists in documents
■ What data types those field-values must

have
■ etc

● Refuses to write invalid documents

https://www.percona.com/blog/2018/08/16/mongodb-how-to-
use-json-schema-validator/

Comparisons

Memcached / Redis

● A Key/Value store
○ Memcached: without persistence
○ Redis: with persistence to disk

● LRU caching of key/values
● Useful for

○ Caching opaque values with known keys
○ Eg: caching blobs, JOINs, API data, etc

● Drawbacks
○ Lack of query functionality
○ Lack of built-in High Availability

MySQL (PostgreSQL to some extent)

● Relational database model with SQL query language
● Support via InnoDB
● Built-in asynchronous replication

○ Semi-sync is possible
● Useful for

○ Almost anything
● Drawbacks

○ Does not have full High Availability built-in
■ Tools like MHA themselves are rarely Highly-available

MySQL (PostgreSQL to some extent)

● Drawbacks
○ No built-in support for scaling beyond 1 x node/set

■ No cluster knowledge
■ No cluster time

○ Lack of tunable consistency
○ Inflexible schema

■ Schema changes usually cause a full table rewrite or
significant disk I/O

■ Yes, there is JSON support…
○ Depends heavily on single-node assumptions

MySQL JSON Syntax

● MongoDB was designed for semi-structured data:

db.products.find({
 category_id: 1,
 "ports.usb": { $gt: 0 },
 "ports.hdmi": { $gt: 0 }
)

db.products.createIndex({
 "ports.usb": 1
})

ALTER TABLE `e_store`.`products` ADD COLUMN
`port_usb` INT GENERATED ALWAYS (c->"$.ports.usb"),
 ADD INDEX `port_usb` (`port_usb`);

Cassandra

● Columnar based database with SQL-like query interface
● Benefits

○ Highly write-optimised
○ Flexible schema
○ Synchronous Writes
○ Multi-master, highly available topology

● Drawbacks
○ Lack of 2ndary indexing, limited query functionality
○ Reads are sometimes slow
○ Always uses Synchronous Writes
○ Java (ScyllaDB has made a C-based fork)

MongoDB in Contrast

● Full High-availability
● Linear, online read and write scaling

○ Auto-balancing of cluster data
● Natural, rich document model
● Powerful Aggregation Framework / Pipeline
● Great Read and Write performance
● Great indexing support
● Cluster-wide Causal Consistency
● Operation Profiling

MongoDB in Contrast

● Built-in on-disk compression
● Simple query syntax
● Useful for:

○ Almost anything

(Mis)conceptions

Please don’t let me be misunderstood

https://www.infoworld.com/article/3244138/sql/cockroachdb-review-
a-scale-out-sql-database-built-for-survival.htmlhttps://blog.panoply.io/cassandra-vs-mongodb

1. ACID Transactions (which
Cassandra doesn’t have)

2. Read and Write Concerns

1. Use Read and Write
Concerns for time
sensitive data

Please don’t let me be misunderstood

https://www.youtube.com/watch?v=HdnDXsqiPYo

“It’s like writing your data to /dev/null”

1. Journaling (enabled by default)
2. Write Concerns

1. ACID Transactions were added
in 4.0

2. Cluster-wide ACID coming soon

https://www.enterprisedb.com/blog/acid-priority-or-not-can-mongodb-decide

Please don’t let me be misunderstood

“It’s like writing your data to /dev/null”

1. Use Schema Validation

“Schema-less ==
inconsistent data”

1. Don’t leave your front door unlocked
2. Use authentication (enabled by default 3.6+)

https://www.theinquirer.net/inquirer/news/3016752/mongodb
-hack-26000-databases-whacked-by-ransomware

Please don’t let me be misunderstood

“It’s like writing your data to /dev/null”

https://www.mongodb.com/press/mongodb-issues-new-se
rver-side-public-license-for-mongodb-community-server

1. Percona MongoDB Offerings

Percona and MongoDB

Percona Server for MongoDB

● Free, open-source drop-in replacement for MongoDB Community
Edition
○ No client-level API changes
○ No lock-in unless our additional features are used

● Enterprise-Grade features for free
○ Auditing support
○ External LDAP Authentication
○ Hot Backups (for WiredTiger)
○ Percona InMemory Engine

■ Make MongoDB a sharded caching tier!
○ New in 3.6.8: alpha release of WiredTiger Data Encryption!

Percona Monitoring and Management

● Free and open-source platform for managing and monitoring MySQL®,
MariaDB® and MongoDB® performance

● Provides
○ Visualisations of Database and Operating System metrics
○ Point-in-time visibility and historical trending of performance
○ Data from the MongoDB Query Profiler

■ Very useful for development and production troubleshooting
■ Avoids the need for connecting to databases

● Docker-based deployment of server

Percona PMM: Metrics

Percona PMM: Query Analytics

Coming soon from us...

● Percona Server for MongoDB 4.0
● Container orchestration for MongoDB…
● A new consistent backup solution for MongoDB…

Join the open source community in Frankfurt, Germany,
to learn about core topics in MySQL, MongoDB, MariaDB
PostgreSQL and other open source databases.

Connect. Accelerate. Innovate.
Percona Live Europe

Frankfurt 5-7 November 2018

Reserve Your Seat

Buy Your Tickets >

Tickets are selling fast!

https://www.percona.com/live/e18/

DATABASE PERFORMANCE
MATTERS

Questions?

