
1

Testing the Value of ScaleFlux
Computational Storage Drive
(CSD) for PostgreSQL

WHITEPAPER

2

Overview

As an independent, unbiased, open source database expert, Percona is often asked to test and evaluate open source
software. ScaleFlux approached Percona to benchmark the ScaleFlux

®
 CSD 2000 against a similar Intel drive.

ScaleFlux claims that running PostgreSQL on their drive enables customers to use less Flash and achieve better
database performance - both in terms of Queries Per Second (QPS) and Latency.

ScaleFlux attributes these benefits to their innovative integration of hardware compression/decompression directly
into the drive. They refer to this as transparent compression since the application or host does not need to do anything
to trigger the compression function, it happens automatically. Since compression usually adds latency and decreases
performance, we were interested to test the ScaleFlux claims.

This white paper describes how we tested the claims that ScaleFlux makes regarding the CSD 2000 and gives
information on the performance and results that Percona measured.

Drives Tested
Percona performed benchmarks on the ScaleFlux CSD 2000 drive and a similar Intel NVMe drive. The tests were
conducted on two X86 servers provided by ScaleFlux, which consisted of one database machine and one application node.

Benchmark Objective
The objective was to stress test each hardware appliance using exactly the same software stack and configuration
parameters. Increasing the load on machine resources made it possible to observe how each appliance fared and to
identify differences as the benchmarking scaled.

Benchmarking Summary

Much of the benchmarking demonstrated that no one device dominated all three of the tests:
• read-only
• read-write
• write-only

Performance and stability varied depending on the types of loading and the amount of scaling the DBMS experienced.

As the appliances were pushed harder (something that always interests us when testing hardware) the Scaleflux CSD
2000 demonstrated better load stability and comparable TPS as its performance scaled, compared to the Intel DC
P4610. Fillfactor played a significant part in stability. As the fillfactor dropped, paging was reduced.

In terms of space utilization; the CSD 2000’s ability to maximize disk space, along with a balanced autovacuum policy
and decreasing fillfactor, reduced the data cluster’s footprint by compressing the table’s empty page space. This was
especially noticeable when it serviced high volume DML operations.

Author’s note:
1. PostgreSQL natively compresses data, TOASTED BLOBS, as much as possible before committing to disk. Although not tested, performance

gains are possible when blobs, large amounts of data, are toasted as columns of type bytea and are explicitly left uncompressed by Postgres
thereby making available additional CPU capabilities for processing by the RDBMS. Use cases would include text searches and parsing. Refer
to the PostgreSQL reference documentation here for more information.

2. Controlling bloating, by tuning the autovacuum runtime parameters, optimizes the benefits of compression gained when lowering the fillfactor.
The presence of a large amount of dead tuples mitigates the benefits derived from compression.

https://www.postgresql.org/docs/12/storage-toast.html#STORAGE-TOAST-ONDISK

3

Apparatus Details

Hardware Resources:
• RAM: 64 GB
• CPU: 32

Software Stack:
• OS: Ubuntu 18.04.4 LTS
• Database host

 » PostgreSQL ver 12.3 (edited runtime parameters)

 • listen_addresses = ‘*’
 • autovacuum_freeze_max_age = ‘1000000000’
 • autovacuum_max_workers = ‘10’
 • checkpoint_completion_target = ‘0.93’
 • effective_cache_size = ‘30GB’
 • effective_io_concurrency = ‘20’
 • huge_pages = ‘try’
 • maintenance_work_mem = ‘1GB’
 • max_connections = ‘600’

 • random_page_cost = ‘2’
 • ssl = ‘off’
 • wal_buffers = ‘100MB’
 • wal_init_zero = ‘off’
 • wal_recycle = ‘off’
 • work_mem = ‘20MB’
 • shared_buffers = ‘10GB’
 • max_wal_size = ‘10GB’
 • full_page_writes = ‘off’

 » A data cluster on each partition/drive
 » 1 database on the cluster
 » 540 tables (4 columns; 1 column PK, 1 indexed column, 2 padded columns)
 » Connection pooler:

 • pgbouncer ver 1.13.0
 • configured to access both partitions simultaneously per the benchmarking application

• Benchmarking host

 » sysbench ver 1.1.0-35bbfa0
 » postgres client, psql (ver 12.3)

The partitions/drives used in these tests were:
• ScaleFlux - CSD 2000 4TB
• Intel - P4610 3.2TB

About ScaleFlux CSD 2000

The ScaleFlux Computational Storage Drive CSD 2000 Series claims to provide exceptional performance, scalability,
and a lower Total Cost of Ownership (TCO) for mainstream Flash storage deployments.

ScaleFlux drives include the features you expect in an enterprise class SSD. However, ScaleFlux actually integrates
hardware accelerated compute engines into their drives - hence the term “Computational Storage Drive” instead of
just “Solid State Drive”. This allows ScaleFlux CSDs to achieve exceptional Read/Write data speeds, consistently lower
latency, and a lower total cost of ownership.

The CSD 2000 is promoted as setting a new standard for performance consistency across workloads (random Read/
Write IOPs).

4

ScaleFlux claims that the CSD 2000 allows users to reduce TCO by:

1. Increasing TPS per server for better overall datacenter efficiency
2. Reducing effective cost per GB with Data Compression
3. Enabling in-field upgrades to the compute functions

The CSD 2000 drive features include:

• PCIe Gen 3 X4 host interface
• Add in Card and U.2 Drive form factors
• Up to 16TB Effective Capacity with data path compression (4/8TB raw)
• Transparent GZIP Compression / Decompression Engine
• Variable Length Mapping (VLM) Flash Translation Layer
• Adjustable driver settings to optimize performance and $/GB
• Throttling to avoid overheating and comply with slot power limitations
• End-to-end data protection and ECC (Error Correction Code) on all internal memories in the data path;
• Integrated LDPC engine and Flash die RAID assures 10 -20 UBER
• Complete data protection from unplanned power loss

About the Intel SSD DC P4610 Series

Following the previous generation, the Intel® SSD DC P4600 Series, the Intel SSD DC P4610 Series is a 64-layer TLC
Intel® 3D NAND technology. It is designed and built for modern cloud computing services. The DC P4610 is marketed to
be capable of 35% faster writes than its predecessor.

Benchmarking Methodology

1. A PostgreSQL data cluster was initialized on each partition. The data clusters were configured on separate ports
allowing for tandem access as required.

2. A single, empty database was created on each data cluster.
3. The connection pooler was configured to access both databases
4. Running sysbench, both databases were created with 540 standalone tables each, i.e. no foreign keys were used,

and were then populated with 1 million records per table. No Toasted tables were created for these benchmarks.
5. Total size per table: 2.175GB
6. Total size database on each data cluster: 1.373TB

About fillfactor

The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the default. When a smaller
fillfactor is specified, INSERT operations pack table pages only to the indicated percentage; the remaining space on
each page is reserved for updating rows on that page.

In order to better appreciate the differences between the two appliances, these tests were performed in two phases.
Phase 1 uses the default fillfactor value of 100. Phase 2 reduces the fillfactor to 70.

5

What Did Percona Test?

Phase 1: fillfactor = 100

Three different tests were performed:
• Simple Read access
• Read and Write operations
• Write only operation

Each of the three tests generated two sets of metrics:
1. TPS, transactions per second
2. QPS, queries per second: (r, w, o)

Each set of the three different tests were performed using an increasing number of threads:

• 1
• 8
• 16
• 32

• 64
• 96
• 128
• 256

Phase 2: fillfactor = 70
These benchmarking runs were executed using the same tests as outlined in phase 1, except that each table’s fillfactor
was reset to a newer lower value of 70.

NOTE: The number of records in each table of the 540 tables was reduced from 1.5 million to 1.0 million records in
order to accommodate the space limitations of the intel appliance.

6

Results - TPS

Phase 1 (fillfactor = 100)

SET 1: TPS READ-ONLY 1,8,16,32 THREADS

Set 1: TPS Read-Only Results Commentary

The results appear to indicate that the TPS read-only metrics between the two hardware appliances are the same.

7

SET 1: TPS READ-ONLY cont’d 64,96,128,256 THREADS

8

SET 2: TPS READ-WRITE 1,8,16,32 THREADS

Set 2: TPS Read-Write Results Commentary

The graphical analysis below shows that the ScaleFlux CSD 2000 performs in a far more stable fashion at TPS rates
greater than 32 threads than the Intel appliance. You can see the increased performance variance on the Intel
appliance here. Only after reaching a benchmark of 256 threads do we begin to see increased performance variance
with the ScaleFlux CSD 2000. Even at this point, the Intel appliance continues to exhibit a greater performance
variance than the ScaleFlux CSD 2000.

9

SET 2: TPS READ-WRITE cont’d 64,96,128,256 THREADS

10

SET 3: TPS WRITE-ONLY 1,8,16,32 THREADS

Set 3: TPS Write-Only Results Commentary

This set of results presents a more complicated picture. The ScaleFlux CSD 2000 demonstrates better performance
and stability until 32 threads, when it then becomes more variable than the Intel appliance.

11

SET 3: TPS WRITE-ONLY cont’d 64,96,128,256 THREADS

12

Results - QPS

Phase 1 (fillfactor = 100)

Phase 1: QPS Results Commentary

Overall results here are mixed, with unexpected behavior occurring at specific threads:
• Read-only:

 » <=16 threads, performance is relatively close.

 » <= 128 threads, ScaleFlux CSD 2000 overall performance was on par with the Intel DC P4610.

 » At 256 threads, the Intel appliance performance increased slightly, but ScaleFlux dropped below its own 128
thread performance levels.

• Read-write:

 » <= 32 threads, performance is relatively close.

 » > 32 threads, ScaleFlux and Intel continued to have the same average levels of performance. However, the Intel
appliance demonstrated wide swings with peaks and large dips, while the ScaleFlux appliance was rock-solid
and stable throughout the test.

• Write-only:

 » < 32 threads, performance is relatively close.

 » >=32 threads, the Intel appliance exhibited slightly increased performance with better stability. The Scaleflux
CSD 2000 qpa(w) was the only metric that degraded, both qps(r) and qsp(o) remained stable, as it experienced
sudden drops in writes.

13

14

15

16

However, performance differences between 128 and 256 threads were less significant, especially when compared
to the aforementioned loading with a lower number of threads. In other words, these relative differences
disappeared as loads increased.

Phase 2 (fillfactor = 70)

Set 1 Read-Only 64,96,128,256 Threads

Phase 2: Read-Only Results Commentary

As the fillfactor is gradually reduced from 100 to 70 one sees increases in both the TPS and its stability as the
performance variance narrows while the loading i.e. number of threads increases. Improved stability was observed for
both devices.

17

18

SET 2: TPS READ-WRITE 64,96,128,256 THREADS

Phase 2: Read-Write Results Commentary

At 256 threads we observed that the ScaleFlux CSD 2000 was definitely superior to the Intel device. It appears that
stability kicked in for the Intel device as soon as the threads were doubled, but brought a drop in performance.
Meanwhile, ScaleFlux maintained the same level of performance. Although, it is interesting to note that there appeared
to be a ramp-up at the outset before stability was reached.

19

SET 3: TPS WRITE-ONLY 64,96,128,256 THREADS

Phase 3: Write-Only Results Commentary

It is evident that the fillfactor played an important role in performance. Not only did the TPS increase for both appliances,
but it also increased their relative stability when compared to the lower number of threads with the fillfactor at its default
value of 100. Once again we saw strange performance variability for the Intel device at 128 threads and saw that it
calmed down at 256 threads. Although there was a slight performance reduction as the threads were increased for the
ScaleFlux device, it was equivalent to Intel. Again we saw a definite improvement in overall stability.

20

Comparative Analysis of Read-Write Versus Write-Only TPS

Although you can discern the differences from the graphical analysis already presented, the tabular results below
conclusively demonstrate the ScaleFlux device performance improvement over the Intel appliance, when the discrete
data points were aggregated: i.e. averages and variances at a fillfactor of 70. The data shows that the averages are
greater and the variance, sic stability, is narrower.

Read-Write TPS (average and variance) with fill-factor=70

64 threads 96 threads 128 threads

Avg. σ2 Avg. σ2 Avg. σ2

Intel 2,238 35,942 2,282 63,027 2,275 52,897

ScaleFlux 2,320 5,540 2,350 6,839 2,313 9,427

Write-only TPS (average and variance) with fill-factor=70

64 threads 96 threads 128 threads

Avg. σ2 Avg. σ2 Avg. σ2

Intel 8,724 2,753,378 8,899 1,644,340 9,062 977,704

ScaleFlux 8,942 249,552 9,044 147,307 8,979 168,419

21

Disk Space Results

Observations

These were the metrics for each appliance after each set of benchmark runs. The runtime conditions were as follows:

1. 540 tables were used.
2. The database fill factor was reset before the beginning of each benchmark run.
3. The tables were VACUUMED prior to each appliance benchmark i.e. minimal bloat.
4. Updates were Heap Only Tuples (HOT) i.e. no columns containing indexes were updated.
5. To take into account the space limitation of the Intel appliance it was necessary to reduce the number of records

used from 1.5 to 1.0 million per table.

Appliance Fill
Factor

records AVG Table
Size

TOTAL
Database Size

Partition
Physical
Size Used

ScaleFlux
Physical
Size Used

ScaleFlux
Compressed
ratio

Intel 100 1.5 million 2175 MB 1377 GB 2.1T NA NA

ScaleFlux 100 1.5 million 2175 MB 1377 GB 2.1T 1202GB 1.23:1

Intel 70 1.0 million 3220 MB 1925 GB 1.9T NA NA

ScaleFlux 70 1.0 million 3220 MB 1924 GB 1.9T 849GB 2.43:1

You can see that the storage footprint was quite different between the two appliances. On the Intel drive, using the
default setting of fillfactor 100, the database consumed 918GB per 1M records. Using fillfactor 70, the storage space
consumption grew to 1925GB per 1M -- 2.1x the physical footprint. In contrast, due to the integrated compression
feature in the CSD 2000, fillfactor 100 consumed only 718GB per 1M records, which then reduced to 515GB per 1M
records at fillfactor 70.

Coupled with a properly tuned autovacuum process, mitigating bloat, it was possible to realize significant space gains
on the ScaleFlux appliance.

Author’s Note: Adjusting the fillfactor in PostgreSQL is appropriate when one sees a large amount of UPDATE and DELETE
operations on the same record (TUPLE). For example, when a smaller fillfactor is specified, INSERT operations pack table pages
only to the indicated percentage; the remaining space on each page is reserved for updating rows on that page. This gives UPDATE
a chance to place the updated copy of a row on the same page as the original, which is more efficient than placing it on a different
page. For a table whose entries are never updated, complete packing with a value of 100 is the best choice, but in heavily updated
tables smaller fill factors are appropriate.

22

Contact Us
We can provide onsite or remote Percona Consulting for current or planned projects, migrations, or emergency
situations. Every engagement is unique and we work alongside you to plan and create the most effective solutions
for your business.

Percona Managed Services can support and help you manage your existing database infrastructure; whether
hosted on-premise, or at a co-location facility, or if you purchase services from a cloud provider or database-as-
as-ervice provider.

To learn more about how Percona can help, and for pricing information, please contact us at +1-888-316-9775
(USA), +44 203 608 6727 (Europe), or email us at sales@percona.com.

Conclusion

The ScaleFlux drive offers two major features: Atomic Writes and built-in compression.

Our testing verifies ScalesFlux’s claims that if a customer has a write-heavy or mixed read/write workload the
ScaleFlux drive can improve their performance.

We also verified the claim of extending the usable capacity beyond the physical capacity of the drive by decreasing the
fillfactor. This makes it ideal for high delete and update operations, with the proviso that the autovacuum daemon is
properly tuned, which in turn mitigates bloat. Using the ScaleFlux drive, the application performs more writes with a
smaller variance, and greater stability, while taking up less storage because of the built-in transparent compression.

Coupled with a properly tuned autovacuum process, mitigating bloat, it was possible to realize significant space gains
on the ScaleFlux appliance. Using the default fillfactor of 100, space savings were realized with a compressed ration of
1.93. and this increased by a factor of 2.5x when the fillfactor was decreased from 100 to 70.

Based on the benchmark testing and the capabilities of the ScaleFlux CSD 2000, it is well suited to customers who are
concerned with:

• Consistent performance and latency in common transactional database workloads to meet SLAs
• Reducing their overall Flash storage costs without sacrificing performance
• Extending the life of their SSD.

Further test result information can be reviewed on the Percona Blog, or contact ScaleFlux directly for more details.

https://www.percona.com/services/consulting
https://www.percona.com/services/managed-services
mailto:sales@percona.com
https://www.percona.com/blog/
mailto:info@ScaleFlux.com

23

Appendix

About sysbench

sysbench is a scriptable multi-threaded benchmark tool based on LuaJIT. It is most frequently used for database
benchmarks, but can also be used to create arbitrarily complex workloads that do not involve a database server.
sysbench comes with the following bundled benchmarks:

oltp_*.lua: a collection of OLTP-like database benchmarks
fileio:	 a filesystem-level benchmark
cpu:	 a simple CPU benchmark
memory:	 a memory access benchmark
threads:	 a thread-based scheduler benchmark
mutex:	 a POSIX mutex benchmark

Features

• Extensive statistics about rate and latency is available, including latency percentiles and histograms;
• Low overhead even with thousands of concurrent threads. sysbench is capable of generating and tracking

hundreds of millions of events per second;
• New benchmarks can be easily created by implementing pre-defined hooks in user-provided Lua scripts;
• Can be used as a general-purpose Lua interpreter as well, simply replace #!/usr/bin/lua with #!/usr/bin/sysbench	

in your script.

Sysbench Benchmarking Invocation

				sysbench	\
								--threads=$threads	\
								--tables=$TBL	\
								--table_size=$TBLSZ	\
								--report-interval=$INTERVAL		\
								--time=$TIME	\
								--pgsql-host=$HOST	\
								--pgsql-port=$PORT	\
								--pgsql-db=$DB	\
								--pgsql-user=$USR	\
								--pgsql-password=$PSWD	\
								--db-driver=pgsql	\
								--rand-type=uniform	\
				oltp_read_only	$cmd

Sysbench Script(s)

The following scripts were used to generate both the loading and its resultant graphical analysis. Where required,
when conducting multiple testing runs, the key parameters, located at the beginning of the script, were edited.

24

Go_sysbench_prepare.sh

#!/bin/bash	
#	
#	USAGE:	
#		./go_scratch_sysbench_prepare.sh	intel|scaleflux	
#	
	
##################	
#	GLOBAL	VARIABLES	
#	
USR=postgres	
PSWD=mypassword	
	
#	HOST=scaleflux-db	
		HOST=192.168.0.110	
#	
##################	
#	SYSBENCH	VARIABLES	
#	
		TBL=540	
		TBLSZ=10000000	
#	TBLSZ=20000	
		INTERVAL=1	
#	
###	
	
function	f_sysbench	{	
				threads=10	
				cmd=$2	
	
				sysbench	\	
								--threads=$threads	\	
								--tables=$TBL	\	
								--table_size=$TBLSZ	\	
								--report-interval=$INTERVAL		\	
								--time=$TIME	\	
								--pgsql-host=$HOST	\	
								--pgsql-port=$PORT	\	
								--pgsql-db=$DB	\	
								--pgsql-user=$USR	\	
								--pgsql-password=$PSWD	\	
								--db-driver=pgsql	\	
								--rand-type=uniform	\	
				oltp_read_only	$cmd	
}	
	
function	main	{	
				threads=10	
				DB=$1	
	

25

				echo	"stop	data	cluster	$DB	..."	
				ssh	postgres@$HOST	"pg_ctlcluster	12	$DB	stop	--	--wait"	2>/dev/null	
				echo	"sleeping	..."	&&	sleep	3s	
	
				echo	"start	datacluster	sitting	on	partition	$DB	..."	
				ssh	postgres@$HOST	"pg_ctlcluster	12	$DB	start	--	--wait	-o	'-c	fsync=off	-c	maintenance_work_
mem=1GB	-c	autovacuum=off'"	
	
				echo	"sleeping	..."	&&	sleep	3s	
	
				echo	"restarting	pgbouncer	..."	
				ssh	postgres@$HOST	"/usr/sbin/pgbouncer	-R	-d	/etc/pgbouncer/pgbouncer.ini"	
				echo	"sleeping	..."	&&	sleep	3s	
	
				echo	-e	"cleanup	tables	..."	
				f_sysbench	$threads	cleanup	
	
				echo	-e	"preparing	tables	..."	
				f_sysbench	$threads	prepare	
	
				echo	-e	"setting	service	with	fsync=on"	
				ssh	postgres@$HOST	"pg_ctlcluster	12	$DB	restart	--	--wait"	
}	
#	
###	
#	
	
echo	"$(date):	AND	THE	RACE	IS	ON	..."	
main	$1	
echo	"$(date):	DONE,	PARTITION	$1	..."

go.sh

#!/bin/bash	
	
###	
#	ATTENTION:	run	sar	as	"root"	
#	
#	sar	-qwdrbu	ALL	1	-o	sar-$(date	--iso-8601=minutes).dat	
#	sync;	echo	1	>	/proc/sys/vm/drop_caches	
#	sync;	echo	2	>	/proc/sys/vm/drop_caches	
#	sync;	echo	3	>	/proc/sys/vm/drop_caches	
#	
###	
	
echo	"$(date):	START	MASTER	GO"	
	
./go_sysbench.sh	scaleflux	
sleep	10s	
./go_sysbench.sh	intel	

26

	
echo	"$(date):	DONE	MASTER	GO"

go_sysbench.sh

#!/bin/bash	
#	
#	USAGE:	
#		./go_sysbench.sh	intel|scaleflux	
#	
	
##################	
#	GLOBAL	VARIABLES	
#	
USR=postgres	
PSWD=mypassword	
	
		THREADS='1	8	256'	
#	THREADS='1	8	16	32	64	96	128	256'	
#	THREADS='1	8	16'	
	
#	HOST=scaleflux-db	
		HOST=192.168.0.110	
#	
##################	
#	SYSBENCH	VARIABLES	
#	
		TBL=540	
		TBLSZ=10000000	
#	TBLSZ=20000	
		INTERVAL=1	
#	TIME=10	
		TIME=600	
#	TIME=1800									#	use	1800	sec	(30min)	when	ready	
#	
############	
	
MODULE="oltp_read_only	
								oltp_read_write	
								oltp_write_only	
"	
#	
###	FUNCTIONS,	DO	NOT	EDIT	BELOW	THIS	LINE	###	
#	
function	usage	{	
				echo	"Usage:	$0	intel|scaleflux"	
				exit	1	
}	
	

27

function	is_argument	{	
				local	f="$1"	
				[[-f	"$f"]]	&&	return	0	||	return	1	
}	
	
function	f_sysbench	{	
				threads=$1	
				cmd=$2	
	
				sysbench	\	
								--threads=$threads	\	
								--tables=$TBL	\	
								--table_size=$TBLSZ	\	
								--report-interval=$INTERVAL		\	
								--time=$TIME	\	
								--pgsql-host=$HOST	\	
								--pgsql-port=$PORT	\	
								--pgsql-db=$PARTITION	\	
								--pgsql-user=$USR	\	
								--pgsql-password=$PSWD	\	
								--db-driver=pgsql	\	
								--rand-type=uniform	\	
				$module	$cmd	
}	
	
function	f_prepare	{	
				threads=1	
	
				echo	"stop	both	data	clusters	..."	
				ssh	postgres@$HOST	"pg_ctlcluster	12	intel	stop	--	--wait"	
				ssh	postgres@$HOST	"pg_ctlcluster	12	scaleflux	stop	--	--wait"	
				echo	"sleeping	..."	&&	sleep	3s	
	
				echo	"start	datacluster	sitting	on	partition	$DB	..."	
				ssh	postgres@$HOST	"pg_ctlcluster	12	$DB	start	--	--wait"	
				echo	"sleeping	..."	&&	sleep	3s	
	
				echo	"restarting	pgbouncer	..."	
				ssh	postgres@$HOST	"/usr/sbin/pgbouncer	-R	-d	/etc/pgbouncer/pgbouncer.ini"	
				echo	"sleeping	..."	&&	sleep	3s	
}	
	
function	main	{	
				export	LOGa="sysbench-$PARTITION-$(date	--iso-8601=minutes)"	
				export	LOGb="$LOGa.$TBL.$TBLSZ"	
	
				mkdir	-p	$HOME/LOG	
				mystring="=====	$(date):	PREP	WORK	FOR	PARTITION:$PARTITION,	PORT:$PORT,	DATABASE:$DB	...	====="	
				echo	"$mystring"	|	tee	-a	$HOME/LOG/$LOGa.log	$HOME/LOG/$LOGa.msg	
				f_prepare	
	

28

				mystring="=====	$(date):	VACUUM	ANALYZE	FOR	PARTITION:$PARTITION,	PORT:$PORT,	DATABASE:$DB	...	====="	
				echo	"$mystring"	|	tee	-a	$HOME/LOG/$LOGa.log	$HOME/LOG/$LOGa.msg	
				psql	-q	"host=$HOST	port=$PORT	user=$USR	password=$PSWD	dbname=$DB"	-c	'vacuum	analyze'	
	
				for	module	in	$MODULE	
				do	
								for	threads	in	$THREADS	
								do	
												logc="$LOGb".$module.$threads	
	
												mystring="*****	$(date):	USING	$threads	THREADS,	MODULE:$module	*****"	
												echo	"$mystring"	|	tee	-a	$HOME/LOG/$LOGa.log	$HOME/LOG/$LOGa.msg	
	
												f_sysbench	$threads	run	|	tee	-a	$HOME/LOG/$LOGa.log	|	grep	-E	'̂ \['	>	$HOME/LOG/$logc.log	
	
												mystring="*****	$(date):	DONE"	
												echo	"$mystring"	|	tee	-a	$HOME/LOG/$LOGa.log	$HOME/LOG/$LOGa.msg	
												gzip	$HOME/LOG/$logc.log	
								done	
				done	
				gzip	$HOME/LOG/$LOGa.log	
}	
#	
#################	
#	
[[$#	-eq	0]]	&&	usage	
	
if	(is_argument	"$1")	
then	
				echo	"Missing	Argument"	
else	
				if	[[$1	=	'intel']]	
				then	
								echo	"Intel	configuration"	
								export	PARTITION=intel	\	
															PORT=5432	\	
															DB=intel	
				elif		[[$1	=	'scaleflux']]	
				then	
								echo	"Scaleflux	configuration"	
								export	PARTITION=scaleflux	\	
															PORT=5432	\	
															DB=scaleflux	
				else	
								echo	"Bad	Argument"	
				fi	
fi	
	
main	
echo	"$(date):	DONE"

29

go_parse-SYSBENCH.sh

#!/bin/bash	
set	-e	
	
for	u	in	$(ls	*gz)	
do	
				LOG=$(basename	-s	.log.gz	$u)	
	
				zcat	$u	\	
				|	tr	'/'	'	'	|	tr	-d	'\[\]\:\(\)\,[:alpha:]'	|	tr	-s	'	'	'	'	\	
				|	cut	-d	'	'	-f	1-8,10	>	$u.csv	
Done

go_parse-MSG.sh

#!/bin/bash	
set	-e	
	
A='sysbench-intel-2020-07-17T13:54-07:00.msg'	
B='sysbench-intel-2020-07-17T13:55-07:00.msg'	
C='sysbench-scaleflux-2020-07-18T04:00-07:00.msg'	
for	u	in	$A	$B	$C	
do	
				cat	$u	|	grep	-v	'===='	|	grep	MODULE	|	cut	-d	'	'	-f	2,3,4,5,9,11	>	$u.csv	
Done

GNUPLOT Scripts
go_gnuplot-QPS.sh

#!/bin/bash	
	
LIST="$(ls	SYSBENCH/*csv)"	
THREADS='64	96	128	256'	
	
for	u	in	$THREADS	
do	
				for	v	in	read_only	read_write	write_only	
				do	
								for	w	in	intel	scaleflux	
								do	
												list="$(cd	SYSBENCH	&&	ls	sysbench-$w-*$v.$u.log.gz.csv)"	
	
												if	[["$v"	==	"read_only"]]	
												then	
																YRANGE='[0:60000]'	

30

												elif	[["$v"	==	"read_write"]]	
												then	
																YRANGE='[0:60000]'	
												elif	[["$v"	==	"write_only"]]	
												then	
																YRANGE='[0:80000]'	
												fi

												XRANGE='[0:1800]'	
	
												a=${w^ }̂	
												b=${u^ }̂	
	
												c=$(echo	"$v"|tr	'_'	'	')	
												c=${c }̂	
	
												for	x	in	$list	
												do	
												echo	"$x"	
																gnuplot	<<_eof_	
																				set	title	"QPS	ANALYSIS"	
																				set	timestamp	"Architecture:$a,	Threads:$b,	OLTP:	$c,	Generated	on	%Y-%m-%d	at	%H:%M"	
																				set	xdata	
																			#set	timefmt	"%H:%M:%S"	
																				set	timefmt	"%S"	
																				set	xlabel		"Seconds"	
																				set	ylabel	"QPS"	
																				set	yrange	$YRANGE	
																				set	xrange	$XRANGE	
																				set	grid	ytics	lc	rgb	"#bbbbbb"	lw	1	lt	0	
																				set	grid	xtics	lc	rgb	"#bbbbbb"	lw	1	lt	0	
																				plot	"SYSBENCH/$x"	using	1:4	with	lines	title	"QPS	(Total)"	
																				replot	"SYSBENCH/$x"	using	1:5	with	lines	title	"qps:r"	
																				replot	"SYSBENCH/$x"	using	1:6	with	lines	title	"qps:w"	
																				replot	"SYSBENCH/$x"	using	1:7	with	lines	title	"qps:o"	
#																					set	term	svg	
#																					set	output	"SVG/QPS-$x.svg"	
																				set	term	png	
																				set	output	"PNG/QPS-$x.png"	
																				replot	
eof	
												done	
								done	
				done	
Done

go_gnuplot-TPS.sh

#!/bin/bash	
set	-e	

31

	
	INTEL="sysbench-intel-2020-07-17T13:55-07:00.540.10000000"	
	
	SCALEFLUX="sysbench-scaleflux-2020-07-18T04:00-07:00.540.10000000"	
	
for	u	in	"$INTEL"	"$SCALEFLUX"	
do	
				for	v	in	read_only	read_write	write_only	
				do	
								TPS1="$u.oltp_$v.1.log.gz.csv"	
								TPS8="$u.oltp_$v.8.log.gz.csv"	
								TPS16="$u.oltp_$v.16.log.gz.csv"	
								TPS32="$u.oltp_$v.32.log.gz.csv"	
								TPS64="$u.oltp_$v.64.log.gz.csv"	
								TPS96="$u.oltp_$v.96.log.gz.csv"	
								TPS128="$u.oltp_$v.128.log.gz.csv"	
								TPS256="$u.oltp_$v.256.log.gz.csv"	
	
								if	[["$v"	==	"read_only"]]	
								then	
												YRANGE='[2000:3500]'	
								elif	[["$v"	==	"read_write"]]	
								then	
												YRANGE='[1500:3000]'	
								elif	[["$v"	==	"write_only"]]	
								then	
												YRANGE='[4000:14000]'	
								fi	
	
								XRANGE='[0:1800]'	

								a=$(echo	$u	|	cut	-d	'-'	-f	2)	
								a=${a^ }̂	
	
								b=$(echo	"$v"|tr	'_'	'	')	
								b=${b }̂	
	
								gnuplot	<<_eof_	
												set	title	"TPS	ANALYSIS"	
												set	timestamp	"Architecture:$a,	Module:$b,	Generated	on	%Y-%m-%d	at	%H:%M"	
												set	xdata	
												#set	timefmt	"%H:%M:%S"	
												set	timefmt	"%S"	
												set	xlabel		"Seconds"	
												set	ylabel	"TPS"	
												set	yrange	$YRANGE	
												set	xrange	$XRANGE	
												set	grid	ytics	lc	rgb	"#bbbbbb"	lw	1	lt	0	
												set	grid	xtics	lc	rgb	"#bbbbbb"	lw	1	lt	0	
#													set	logscale	y	10	
#													plot	"SYSBENCH/$TPS1"	using	1:3	with	lines	title	"1	thread"	
#													replot	"SYSBENCH/$TPS8"	using	1:3	with	lines	title	"8	threads"	

32

#													replot	"SYSBENCH/$TPS16"	using	1:3	with	lines	title	"16	threads"	
#													replot	"SYSBENCH/$TPS32"	using	1:3	with	lines	title	"32	threads"	
												plot	"SYSBENCH/$TPS64"	using	1:3	with	lines	title	"64	threads"	
												replot	"SYSBENCH/$TPS96"	using	1:3	with	lines	title	"96	threads"	
												replot	"SYSBENCH/$TPS128"	using	1:3	with	lines	title	"128	threads"	
												replot	"SYSBENCH/$TPS256"	using	1:3	with	lines	title	"256	threads"	
#													set	term	svg	
												set	term	png	
												set	output	"PNG/TPS_multithreaded-$u-$v.png"	
												replot	
eof	
	
				done	
Done

Fillfactor Script
go_update-vacuumFill.sh

#!/bin/bash	
	
#	INVOVATION:	
#			./go_update-vacuumFill.sh	"intel|scaleflux"	
#	
#	FILLFACTOR	and	STORAGE	POLICY	UPDATES	
#	
set	-e	
export	PGHOST=192.168.0.110	PGPORT=5432	PGUSER=postgres	PGPASSWORD=mypassword	PGDATABASE=$1	
	
SQL="select	tablename	from	pg_catalog.pg_tables	where	schemaname='public'	order	by	1;"	
LIST="$(psql	-qt	<<<$SQL)"	
	
for	tbl	in	$LIST	
do	
((i	+=	1))	
echo	"----	$i,	$(date):	UPDATING	DATABASE:	$PGDATABASE,	TABLE:	$tbl	...	----"	
psql	<<_eof_	
			\set	ON_ERROR_STOP	on	
				alter	table	public.$tbl	
								alter	column	c	set	storage	plain,	
								alter	column	pad	set	storage	plain;	
	
				alter	table	public.$tbl	set	(fillfactor=70);	
eof	
	
done	
	
echo	"====	$(date):	PERFORMING	VACUUM	FULL"	
psql	<<_eof_	
			\set	ON_ERROR_STOP	on	

33

				vacuum	full	analyze;	
eof

How To Get Real Time Capacity Information

cat	/sys/block/sfdv*/sfx_smart_features/sfx_capacity_stat

Where:

free_space	=		#	of	512	byte	sectors	free	for	writing	by	the	host	
physical_size	=	#	of	512	byte	units	used	to	store	host	data	to	disk	
logical_size	=	#	of	512	byte	sectors	written	by	the	host	
comp_ratio	=	Ratio	of	logical_size	to	physical_size	
space_flag	=	1	if	out	of	space,	0	otherwise

	_3r9ftj27jpsp
	_vmxnxdaygtix
	_7apyxe29edrm
	_wntszejr2d0i
	_59cruhppn6f0
	_2swd66xpdq9b
	_owd1k7dx1obo
	_ehd9ahy5j3vu
	_9q58gxo45dvn
	_ximwzaqfofa6

