
InnoDB performance
optimization

Copyright © 2006-2014 Percona LLC

By Muhammad Irfan, Fernando Laudares,
Nickolay Ihalainen and Michael Benshoof

3
6
9

Chapter 1: InnoDB performance optimization basics
Chapter 2: InnoDB file formats: Here is one pitfall to avoid
Chapter 3: How to move the InnoDB log sequence number (LSN) forward
Chapter 4: MySQL 5.6 - InnoDB Memcached Plugin as a caching layer 12

InnoDB performance optimization

Table of Contents

Percona was founded in August 2006 by Peter Zaitsev and Vadim
Tkachenko and now employs a global network of experts with a staff of
more than 100 people. Our customer list is large and diverse, including
Fortune 50 firms, popular websites, and small startups. We have over
1,800 customers and, although we do not reveal all of their names,
chances are we're working with every large MySQL user you've heard
about. To put Percona's MySQL expertise to work for you, please
contact us.

About Percona

Skype: oncall.percona
GTalk: oncall@percona.com
AIM (AOL Instant Messenger): oncallpercona
Telephone direct-to-engineer: +1-877-862-4316 or
UK Toll Free: +44-800-088-5561
Telephone to live operator: +1-888-488-8556
Customer portal: https://customers.percona.com/

Is this an emergency? Get immediate assistance
from Percona Support 24/7. Click here

Copyright © 2006-2014 Percona LLC

http://www.percona.com/contact/24x7-emergency

InnoDB performance optimization
Chapter 1: InnoDB performance optimization basics

InnoDB performance optimization basics

I recently stumbled upon a post in the MySQL
Performance Blog that Peter Zaitsev published
back in 2007 titled “Innodb Performance
Optimization Basics.” It’s a great post and reading
it inspired me to examine what’s changed in the
nearly six years that have followed in terms of
MySQL, Percona Server – as well as in all of the
other now-available infrastructures.

And a lot has in fact changed! In this post I am going
to highlight most of the InnoDB parameters critical
for InnoDB – specifically from a performance

Hardware:
For larger datasets, nowadays memory counted in hundreds of giga- and even in terabytes is not
surprising. MySQL requires significant memory amounts in order to provide optimal performance.
By caching hot datasets, indexes, and ongoing changes, InnoDB is able to provide faster response
times and utilize disk IO in a much more optimal way. From a CPU standpoint, faster processors
with many cores provide better throughput. CPUs with 32/64 cores or more are becoming common
now, and the latest MySQL versions are able to utilize them much better then before. In terms of
storage, SSD disks are replacing traditional spindles with great success, offering the best
performance for the money. RAID 10 is still the most recommended level for most workloads, but
first make sure your RAID controller is able to utilize the SSD drive’s performance and will not
become the actual bottleneck. There are also many PCI-e Flash drives out there if you need even
more IOPS.

Operating System:

 3

By Muhammad Irfan

perspective. I’m a support engineer and I can tell you
that Percona Support gets many questions related to the right sizing of basic InnoDB parameters.
So hopefully this post will help others with similar questions and issues.

Linux is the most common operating system for high performance MySQL servers. Make sure to
use modern filesystems, like EXT4 or XFS on Linux, combined with the most recent kernel. Each of
them has it’s own limits and advantages: for example XFS is fast in deleting large files, while EXT4
can provide better performance on fast SSD drives. Benchmark before you decide. Check this blog
post to see how EXT4 can outperform XFS. You can use noatime and nodiratime options if you’re
using innodb_file_per_table and a lot of tables though benefit of these is minor. The default I/O
scheduler in Linux is Completely Fair Queuing (CFQ), while Noop/Deadline will be much better in
most cases.. Setting swappiness to zero is generally recommended for the MySQL dedicated host,
which will lower the tendency of swapping. Make sure the MySQL host does not run out of
memory. Swapping is bad for MySQL and defeats the purpose of caching in memory. To learn
more about swapping, check this blog post.

http://www.ssdperformanceblog.com/2013/04/testing-the-micron-p320h/
http://www.ssdperformanceblog.com/2013/04/testing-the-micron-p320h/
http://www.mysqlperformanceblog.com/2008/04/06/should-you-have-your-swap-file-enabled-while-running-mysql/

InnoDB performance optimization
Chapter 1: InnoDB performance optimization basics

MySQL Innodb Settings
From 5.5 InnoDB is the default engine, so these parameters are even more important for
performance than before. The most important ones are:

innodb_buffer_pool_size: InnoDB relies heavily on the buffer pool and should be set
correctly, so be sure to allocate enough memory to it. Typically a good value is 70%-80% of
available memory. More precisely, if you have RAM bigger than your dataset setting it bit
larger should be appropriate with that keep in account of your database growth and
re-adjust innodb buffer pool size accordingly. Further, there is improvement in code for
InnoDB buffer scalability if you are using Percona Server 5.1 or Percona Server 5.5 You
can read more about it here.

innodb_buffer_pool_instances: Multiple innodb buffer pools introduced in InnoDB 1.1
and MySQL 5.5. In MySQL 5.5 the default value for it was 1 which is changed to 8 as new
default value in MySQL 5.6. Minimum innodb_buffer_pool_instances should be lie between
1 (minimum) & 64 (maximum). Enabling innodb_buffer_pool_instances is useful in highly
concurrent workload as it may reduce contention of the global mutexes.

Dump/Restore Buffer Pool: This feature speed up restarts by saving and restoring the
contents of the buffer pool. This feature is first introduced in Percona Server 5.5 you can
read about it here. Also Vadim benchmark this feature You can read more about it in this
post. Oracle MySQL also introduced it in version 5.6, To automatically dump the database
at startup and shutdown set innodb_buffer_pool_dump_at_shutdown &
innodb_buffer_pool_load_at_startup parameters to ON.

innodb_log_file_size: Large enough InnoDB transaction logs are crucial for good, stable
write performance. But also larger log files means that recovery process will slower in case
of crash. However this is not such big issue since great improvements in 5.5. Default value
has been changed in MySQL 5.6 to 50 MB from 5 MB (old default), but it’s still too small
size for many workloads. Also, in MySQL 5.6, if innodb_log_file_size is changed between

 4

restarts then MySQL will automatically resize the logs to match the new desired size during
the startup process. Combined log file size is increased to almost 512 GB in MySQL 5.6
from 4 GB. To get the optimal logfile size please check this blog post.

innodb_log_buffer_size: Innodb writes changed data record into lt’s log buffer, which
kept in memory and it saves disk I/O for large transactions as it not need to write the log of
changes to disk before transaction commit. 4 MB – 8 MB is good start unless you write a lot
of huge blobs.

innodb_flush_log_at_trx_commit: When innodb_flush_log_at_trx_commit is set to 1 the
log buffer is flushed on every transaction commit to the log file on disk and provides
maximum data integrity but it also has performance impact. Setting it to 2 means log buffer
is flushed to OS file cache on every transaction commit. The implication of 2 is optimal and
improve performance if you are not concerning ACID and can lose transactions for last
second or two in case of OS crashes.

http://www.percona.com/downloads/Percona-Server-5.1/
http://www.percona.com/downloads/Percona-Server-5.1/
http://www.percona.com/doc/percona-server/5.5/scalability/innodb_split_buf_pool_mutex.html
http://www.percona.com/doc/percona-server/5.5/management/innodb_lru_dump_restore.html?id=percona-server:features:innodb_lru_dump_restore
http://www.mysqlperformanceblog.com/2010/01/20/xtradb-feature-save-restore-buffer-pool/

InnoDB performance optimization
Chapter 1: InnoDB performance optimization basics

innodb_thread_concurrency: With improvements to the InnoDB engine, it is
recommended to allow the engine to control the concurrency by keeping it to default value
(which is zero). If you see concurrency issues, you can tune this variable. A recommended
value is 2 times the number of CPUs plus the number of disks. It’s dynamic variable means
it can set without restarting MySQL server.

innodb_flush_method: DIRECT_IO relieves I/O pressure. Direct I/O is not cached, If it set
to O_DIRECT avoids double buffering with buffer pool and filesystem cache. Given that you
have hardware RAID controller and battery-backed write cache.

innodb_file_per_table: innodb_file_per_table is ON by default from MySQL 5.6. This is
usually recommended as it avoids having a huge shared tablespace and as it allows you to
reclaim space when you drop or truncate a table. Separate tablespace also benefits for
Xtrabackup partial backup scheme.

Along with that, there are lot of enhancements for InnoDB, specifically in Percona Server 5.5 and in
Oracle MySQL 5.6. Persistent optimizer statistics is one of the features first introduced in Percona
Server 5.5 that requires the enabling of the innodb_use_sys_stats_table in XtraDB. You can read
more about it here. This feature is now included in Oracle MySQL 5.6, too. In MySQL 5.6 persistent
stats are stored in two new tables: mysql.innodb_index_stats and mysql.innodb_table_stats.
Through this query plans are much more accurate and consistent. You can read more about it in
documentation. Also Percona Server 5.5 introduced a Thread Pool feature which is ported from
MariaDB. You can read more about it in this documentation. On a related note, I recommend
reading this blog post from Vadim on the Thread Pool feature.

Percona Server free and open source. An enhanced drop in Oracle MySQL replacement and some

 5

of the mentioned features are only applicable to Percona Server.

There are bunch of other options which you may want to tune but in this post we focus only InnoDB
specifically.

Application tuning for Innodb:
Especially when coming from a MyISAM background, there will be some changes you would like to
make with your application. First make sure you’re using transactions when doing updates, both
for sake of consistency and to get better performance. Next if your application has any writes be
prepared to handle deadlocks which may happen. Third you should review your table structure and
see how you can get advantage of Innodb properties – clustering by primary key, having primary
key in all indexes (so keep primary key short), fast lookups by primary keys (try to use it in joins),
large unpacked indexes (try to be easy on indexes).

Conclusion:
We covered almost all basic and important InnoDB parameters, OS related tweaking and hardware
for optimal MySQL server performance. By setting all mentioned variables appropriately certainly
help to boost overall MySQL server performance.

http://www.percona.com/software/percona-server/downloads/
http://www.percona.com/software/percona-server/downloads/
http://www.percona.com/software/percona-server/downloads/
http://www.percona.com/doc/percona-server/5.5/diagnostics/innodb_stats.html?id=percona-server:features:innodb_stats&redirect=1#innodb_use_sys_stats_table
http://dev.mysql.com/doc/refman/5.6/en/innodb-performance.html#innodb-persistent-stats
http://www.percona.com/software/percona-server/downloads/
http://www.percona.com/doc/percona-server/5.5/performance/threadpool.html
http://www.mysqlperformanceblog.com/2013/03/16/simcity-outages-traffic-control-and-thread-pool-for-mysql/
http://www.percona.com/software/percona-server
http://www.percona.com/software/percona-server

InnoDB performance optimization
Chapter 2: InnoDB file formats: Here is one pitfall to avoid

InnoDB file formats: Here is one pitfall to avoid

Compressed tables is an example of an InnoDB feature that became available with the Barracuda
file format, introduced in the InnoDB plugin. They can bring significant gains in raw performance
and scalability: given the data is stored in a compressed format the amount of memory and disk
space necessary to hold it and move it around (disk/memory) is lower, thus making them attractive
for servers equipped with SSD drives of smaller capacity.

The notion of “file formats” (defined by the variable innodb_file_format) was first introduced when
InnoDB was still a plugin. The evolution of InnoDB has lead to the development of new features
and some of them required the support of new on-disk data structures. That means those particular
features (like compressed tables) will only work with the newer file format. To make things clear
and help manage compatibility issues when upgrading and (specially) downgrading MySQL the
original file format started being referred to as Antelope.

The default file format in MySQL 5.6 and the latest 5.5 releases is Antelope. Note this can be a bit
confusing as the first releases of 5.5 (until 5.5.7) introduced the new file format as being the default
one, a decision that was later reversed to assure maximum compatibility in replication
configurations comprised of servers running different versions of MySQL. To be sure about which
file format is the one set as default in your server you can issue:

The important lesson here that motivated me to write this post is that the file format can only be
defined for tablespaces – not tables, in general. This is documented in the manual but maybe not
entirely clear:

Even if you configure your server with innodb_file_format=Barracuda and recreate the datadir and
basic tables with the script mysql_install_db, the common tablespace will always use Antelope. So,
to create tables under the new file format it is imperative you use innodb_file_per_table. Although
this requirements is documented what might be misleading here is the fact there’s no error being
issued if you set the file format to Barracuda and create a new compressed table without having
innodb_one_file_per_table set – only a couple of warnings, if you pay close attention. Here’s an
example:

 6

By Fernando Laudares

http://dev.mysql.com/doc/innodb/1.1/en/glossary.html#glos_barracuda
http://dev.mysql.com/doc/refman/5.6/en/innodb-compression.html
http://dev.mysql.com/doc/innodb-plugin/1.0/en/innodb-plugin-installation-configuration.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_file_format
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_format

InnoDB performance optimization
Chapter 2: InnoDB file formats: Here is one pitfall to avoid

If you do choose to check the warnings, you’ll find:

This happens when innodb_strict_mode is turned OFF, as it usually is. If it was turned ON the table
creation would fail with the following error:

Now, let’s take a look at what the INFORMATION_SCHEMA tell us about this table:

 7

InnoDB performance optimization
Chapter 2: InnoDB file formats: Here is one pitfall to avoid

There’s two at-first-look “contradictory” fields here:

The one to consider is ROW_FORMAT: CREATE_OPTION is used to store the options that were
used at the moment the table was created and is evoked by the SHOW CREATE TABLE statement
to “reconstruct” it:

Conclusion

A customer contacted us asking how he could get a list of the tables using the compression format,
which we can obtain by interrogating INFORMATION_SCHEMA:

mysql> SELECT TABLE_NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.TABLES
WHERE ROW_FORMAT=Compressed’;

To their surprise this statement returned an empty set. We verified that the tables created by
them specified ROW_FORMAT=Compressed but as shown in this article this method is not to
be trusted – ask the INFORMATION_SCHEMA instead.

 8

InnoDB performance optimization
Chapter 3: How to move the InnoDB log sequence number (LSN) forward

How to move the InnoDB log sequence number (LSN) forward

This chapter focuses on the problem of the InnoDB
log sequence number being in the future.

Preface: What is an InnoDB log sequence number?

The Log sequence number (LSN) is an important
database parameter used by InnoDB in many
places.The most important use is for crash recovery
and buffer pool purge control.

Internally, the InnoDB LSN counter never goes backward. And, when InnoDB writes 50 bytes to the
redo logs, the LSN increases by 50 bytes. As such we can count LSN in megabytes, gigabytes and etc.

Now for the problem: LSN being in the future!

When you have set innodb_force_recovery like this:

innodb_force_recovery=6

... and then issue a data affecting query.

For example, if you are dropping a corrupted table after doing a mysqldump for backup purposes,
InnoDB will save an incorrect LSN to ibdata1 and you will have an error message in the mysqld
error log after each server restart:

The solution: some methods to change the LSN

Usually the safest method to fix the LSN is to insert/delete the required amount of data.

 9

By Nickolay Ihalainen

But what if an old LSN was several TB? Several options are available

a. Use your backup
b. Convert all tables to myisam, remove ibdata1 & ib_logfile*, after server restart, convert all

tables back to InnoDB
c. mysqldump/restore
d. Black magic if you have a huge database

http://www.mysqlperformanceblog.com/wp-content/uploads/2013/09/InnoDB_LSN.jpg

InnoDB performance optimization
Chapter 3: How to move the InnoDB log sequence number (LSN) forward

If you can’t use methods a-c the only way to get correct LSN is make some unsafe step,
like change innodb files or modify mysqld memory:

1. Make sure that you have the debuginfo package installed
2. No queries should be executed (at all!) during operation, otherwise the LSN may be

updated
3. gdb -p `pgrep -x mysqld`

gdb) p log_sys->lsn
$1 = 12300
(gdb) set log_sys->lsn = 12300000;
Invalid character ';' in expression.
(gdb) set log_sys->lsn = 12300000
(gdb) c

4. Shutdown mysqld, this should be a clean normal shutdown
5. Check if the correct LSN us shown in the error log
6. Start mysqld and check if the correct LSN is shown

LOG

Log sequence number 12300000
Log flushed up to 12300000
Last checkpoint at 12300000

7. Insert something, check that the LSN is changing

Possible issues: How to avoid database corruption after you change the LSN

Of course, because this insider method relies on the internal mysql structure it could fail
with future versions of InnoDB.
I have modified LSN in memory for 5.5.32-rel31.0-549.precise during preparations for this
blog post.
Please check the working of this method on the version you are using on a staging system
first.

 10

Also it’s a really bad idea to update the LSN online on a production server, because it will
mean recovery will fail if your server ends up crashing.
Server should be completely idle with the same LSN value for a while.
‘Log sequence number’, ‘Log flushed up to’, ‘Last checkpoint at’ are all the same on
idle server.
If the server is not idle enough, and you don’t see changes in SHOW MASTER STATUS\G
output,
try to SET GLOBAL innodb_fast_shutdown=0 and restart the server.
A server restart is required to write the LSN changes to transaction log.
The system should be stable before change: A mysqld crash during server restart could
cause data corruption. Please check that restart procedure is fast, and that “recovery” is
not in progress in the mysqld error log

InnoDB performance optimization
Chapter 3: How to move the InnoDB log sequence number (LSN) forward

How could corruption happen to start with?

If mysqld crashes, InnoDB will do a crash recovery on mysqld restart.
InnoDB crash recovery applies the transaction log from the last on-disk checkpoint until the ‘Log
flushed up to’ position.
If the ‘Log flushed up to’ position is equal to a non-existing position, InnoDB will try to apply old
events, because transaction logs are organized in a ring buffer manner. There you can additionally
enforce the change if you will re-create transaction logs right before the change. At maximum you
will have a mysqld server crash without significant data corruption.

Last warning: ALWAYS have a backup before modifying memory with gdb, especially if you are
doing something untested with your particular version of MySQL for the first time.

 11

InnoDB performance optimization
Chapter 4: MySQL 5.6 - InnoDB Memcached Plugin as a caching layer

MySQL 5.6 - InnoDB Memcached Plugin as a caching layer

A common practice to offload traffic from MySQL 5.6 is to use a caching layer to store expensive
result sets or objects. Some typical use cases include:

Complicated query result set (search results, recent users, recent posts, etc)
Full page output (relatively static pages)
Full objects (user or cart object built from several queries)
Infrequently changing data (configurations, etc)

In pseudo-code, here is the basic approach:

Memcached is a very popular (and proven) option used in production as a caching layer. While
very fast, one major potential shortcoming of memcached is that it is not persistent. While a
common design consideration when using a cache layer is that “data in cache may go away at any
point”, this can result in painful warmup time and/or costly cache stampedes.

Cache stampedes can be mitigated through application approaches (semaphores, pre-expiring and
populating, etc), but those approaches are more geared towards single key expiration or eviction.
 However, they can’t help overall warmup time when the entire cache is cleared (think restarting a
memcache node). This is where a persistent cache can be invaluable.

Enter MySQL 5.6 with the memcached plugin…

As part of the standard MySQL 5.6 GA distribution, there is a memcached plugin included in the
base plugin directory (/usr/lib64/mysql/plugin/libmemcached.so) that can be stopped and
started at runtime. In a nutshell, here is how one would start the memcached plugin:

 12

By Michael Benshoof

In an effort to not re-invent the wheel, here is a link to the full documentation for setting up the
plugin:

http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached-setup.html

http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached-setup.html

InnoDB performance optimization
Chapter 4: MySQL 5.6 - InnoDB Memcached Plugin as a caching layer

As a quick benchmark, I ran some batches of fetch and store against both a standard memcached
instance and a minimally tuned MySQL 5.6 instance running the memcached plugin. Here are
some details about the test:

Minimal hardware (vBox instances on MacBook Pro)
Centos 6.4
Single core VM
528M RAM
Host-Only network
1 Box with http/php, 1 box with memcache or mysql started

PHP script
Zend framework
libmemcached PECL module
Zend_Cache_Backend_Libmemcached

Here is the rough code for this benchmark:

 13

http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached-setup.html

InnoDB performance optimization
Chapter 4: MySQL 5.6 - InnoDB Memcached Plugin as a caching layer

While this benchmark doesn’t show any multi-threading or other advanced operation, it is using
identical code to eliminate variation due to client libraries. The only change between runs is on the
remote server (stop/start memcached, stop/start plugin).

As expected, there is a slowdown for write operations when using the InnoDB version. But there is
also a slight increase in the average fetch time. Here are the raw results from this test run
(100,000 store operations, 1,000,000 fetch operations):

Standard Memcache:

 14

InnoDB Memcache:

InnoDB MySQL Select (same table):

InnoDB performance optimization
Chapter 4: MySQL 5.6 - InnoDB Memcached Plugin as a caching layer

Keep in mind that the entire data set fits into the buffer pool, so there are no reads from disk.
 However, there is write activity stemming from the fact that this is using InnoDB under the hood
(redo logs, etc).

Based on the above numbers, here are the relative differences:

InnoDB store operation was 280% higher (~1.73 ms/op)
InnoDB fetch operation was 20% higher (~.06 ms/op)
MySQL Select showed 27% increase over InnoDB fetch (~.09 ms/op)

This replaced $cache->load() with $db->query(“SELECT * FROM
memcached.container WHERE id=’key_id’”);
id is PK of the container table

While there are increases in both operations, there are some tradeoffs to consider:

Cost of additional memcached hardware
Cost of operations time to maintain an additional system
Impact of warmup time to application
Cost of disk space on database server

Now, there are definitely other NoSQL options for persistent cache out there (Redis, Couchbase,
etc), but they are outside the scope of this investigation and would require different client libraries
and benchmark methodology.

My goal here was to compare a transparent switch (in terms of code) and experiment with the
memcache plugin. Even the use of HandlerSocket would require coding changes (which is why it
was also left out of the discussion).

Powered by TCPDF (www.tcpdf.org)

 16

http://www.tcpdf.org

Copyright © 2006-2014 Percona LLC

About the authors

Muhammad Irfan is a software engineer vastly experienced in the LAMP Stack. Prior to
joining Percona, he worked in the role of MySQL DBA & LAMP Administrator, maintained
high traffic websites, and worked as a Consultant. His professional interests focus on
MySQL scalability and on performance optimization. In his spare time, he normally spends
time with family and friends and loves to play and watch cricket.

Principal consultant Nickolay Ihalainen has a great deal of experience in both systems
administration and programming. His experience includes extensive hands-on work with a
broad range of technologies, including SQL, MySQL, PHP, C, C++, Python, Java, XML,
OS parameter tuning (Linux, Solaris), caching techniques (e.g., memcached), RAID, file
systems, SMTP, POP3, Apache, networking and network data formats, and many others.
He is an expert in scalability, performance, and system reliability.

Support Engineer Fernando Laudares focuses on the MySQL universe with a particular
interest in understanding the intricacies of database systems. His work experience includes
the architecture, deployment and maintenance of IT infrastructures based on Linux, open
source software and a layer of server virtualization. From the basic services such as DHCP
& DNS to identity management systems, but also including backup routines, configuration
management tools and thin-clients.

MySQL consultant Michael Benshoof enjoys designing extensible and flexible solutions to
problems and has a strong background in HA systems. Prior to joining Percona, Michael
spent several years in a DevOps role in a company that developed and maintained a
SaaS application specializing in social networking. His experiences include application
development and scaling, systems administration, along with database administration and
design.

	Table of Contents
	InnoDB performance optimization
	InnoDB performance optimization basics (redux)
	InnoDB file formats: Here is one pitfall to avoid
	How to move the InnoDB log sequence number (LSN) forward
	MySQL 5.6 - InnoDB Memcached Plugin as a caching layer

	Blank Page

